Consensus

Under the auspices of the Directorate General of Health Services, a 2007 national consensus meeting on the management of SAM resolved that CMAM along with scaling up facility-based management is essential for Bangladesh but that **a local RUTF should be developed** to ensure cost-effective and sustainable programs.

Research....

Joint ICDDRB/UNICEF research has been undertaken for development of new Ready-to-Use Therapeutic Foods (RUTFs) based on local food ingredients

Processes Involved

- Overall development consists of
 - Market survey
 - Identification of suitable food ingredients
 - Development of different RUTF recipes
 - Acceptability testing
 - Efficacy trial in the community
- Dissemination
- Exploring large scale production

Acceptability Testing

 Acceptability of the RUTF by the children as well as by the mothers will be assessed and compared among groups of children, who receive RUTF-1, RUTF-2 or the prototype RUTF (Plumpy'nut)

• To be done in a clinic setting (ICDDR, B Hospital)

Efficacy Trial

-Children with SAM admitted in Dhaka Hospital

-After completion of the initial treatment

- Appetite test
- Will be monitored for any possible adverse effects
- Then the child will be discharged with RUTF ration

Outcome Measures

- Recovery rates
- Time to recovery
- Default rate
- Rate of weight gain
- Resolution of pedal edema

Progress

- Market survey
- Identification of food ingredients
- Establishment of food processing lab
- Nutrient analysis
- Food safety and microbiological tests

Food processing lab

RICE MILLING MACHINE

USING AUTOCLAVED UTENSILS

PERSONAL PROTECTIVE EQUIPMENT

Composition of an Ideal RUTF

Moisture content	2.5% maximum	Vitamin A	0.8 to 1.1 mg/100g
Energy	520-550 Kcal/100g	Vitamin D	15 to 20 μg/100g
Proteins	10 to 12 % total energy	Vitamin E	20 mg/100g minimum
Lipids	45 to 60 % total energy	Vitamin K	15 to 30 μg/100g
Sodium	290 mg/100g maximum	Vitamin B1	0.5 mg/100g minimum
Potassium	1100 to 1400 mg/100g	Vitamin B2	1.6 mg/100g minimum
Calcium	300 to 600 mg/100g	Vitamin C	50 mg/100g minimum
Phosphorus (excluding phytate)	300 to 600 mg/100g	Vitamin B6	0.6 mg/100g minimum
Magnesium	80 to 140 mg/100g	Vitamin B12	1.6 μg/100g minimum
Iron	10 to 14 mg/100g	Folic acid	200 μg/100g minimum
Zinc	11 to 14 mg/100g	Niacin	5 mg/100g minimum
Copper	1.4 to 1.8 mg/100g	Pantothenic acid	3 mg/100g minimum
Selenium	20 to 40 μg	Biotin	60 μg/100g minimum
lodine	70 to 140 μg/100g	n-6 fatty acids	3% to 10% of total energy
		n-3 fatty acids	0.3 to 2.5% of total energy

Nutrient analysis of candidate recipes

 Nutrient: Energy, protein, carbohydrates, vitamins, minerals, peroxide value (work in progress)

• Aflatoxin: Not detected

Microbiological test

Aerobic plate count Total coliform Fecal coliform *E. coli Bacillus cereus Staphylococcus aureus Salmonella spp. Campylobacter spp.*

Micronutrients Premix

Micronutrients mineral powder

Micronutrients vitamin powder

Aflatoxin level: Microorganism content: Coliform test: Clostridium perfringens: Yeast: Moulds: Pathogenic staphylococci: Salmonella: Listeria: 5 ppb maximum 10,000/g maximum negative in 1 g negative in 1 g maximum 10 in 1 g maximum 50 in 1 g negative in 1 g negative in 125 g negative in 25 g

WHO/UNICEF/WFP/SCN RUTF SPEC 2007

At least half of the protein should come from milk products

Training & Teaching Activities

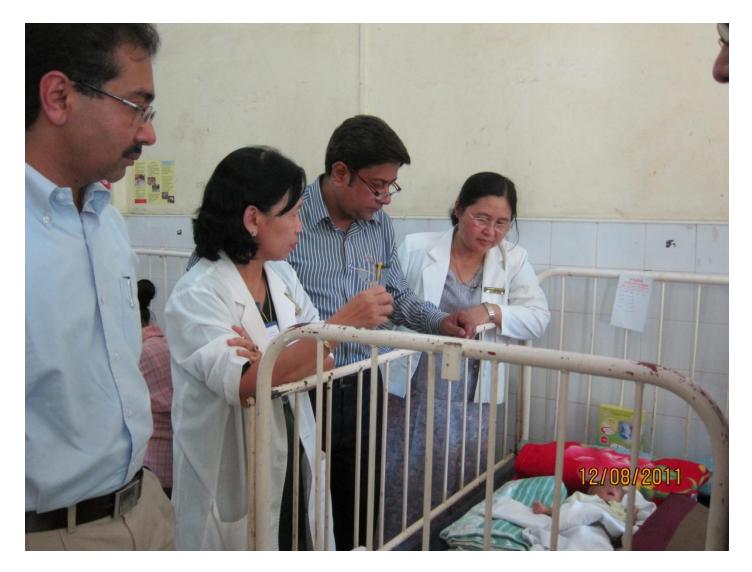
A nurse preparing F-75 with local ingredients in Kabul

Islamic Republic of Afghanistan Ministry of Public Health General Department of Preventive Medicine Public Nutrition Department

Operational Guidelines for the Management of Severe Acute Malnutrition

National training course on management of childhood malnutrition

Kabul, July 2011


Dr Munirul Islam facilitating the trg

Disconnect between HIV AIDS & Nutrition programs

Training Course for Health Professionals in Myanmar

Training of Associate/Assistant Professors of Government Medical Colleges, September-October 2011

Dr Md Iqbal Hossain of iccddr,b and Dr Sayeda Afroza, professor and head of Paediatrics at Sir Salimullah Medical College, demonstrate the clinical features of a child with Severe Acute Malnutrition to course participants

James P Grant School of Public Health BRAC University

University of Uppsala

University of Queensland

Position Paper on Nutrition & Food Security in Bangladesh and the National Seminar

Regional Workshop on Acute Malnutrition, June '11

Bangladesh, Bhutan, DPR Korea, India, Indonesia, Maldives Myanmar, Nepal, Sri Lanka, Timor Leste

How do we combat acute malnutrition in Bangladesh?

- Establish a model for large scale CMAM in Bangladesh
- Work with the NNS, involve NGOs
- Treatment of SAM now in the Nutrition OP
- Implement in 10 Upazilas and an urban slum over 3 years
- Different models of Community Clinic
- Preventive component including IYCF, include sanitation
 - & hygiene

How can we reduce stunting?

- Create awareness, make stunting visible
- Scale up direct nutrition interventions
- Improve nutrition of adolescent girls, pregnant &
 - lactating women
- Improve food security & livelihoods
- Bring poor families under social protection
- Invest in indirect, nutrition sensitive interventions
 - e.g. female literacy, empowerment

How can we reduce stunting?

- Increase number of health workers
- Scale up water, sanitation, hygiene interventions
- Improve caring practices

Hunger and malnutrition are political problems and therefore need political solutions

Research needs

- Search for evidence-based interventions for management of acute malnutrition
- Develop ready-to-use diets from locally available food ingredients that can prevent and treat severe acute malnutrition
- Thinking out of the box investigate etiology of childhood malnutrition in terms of genetic predisposition, environmental enteropathy, and effect of the gut microbiome

Research needs

- The cost-effectiveness of package of nutritional interventions at the country level
- How can we improve complementary feeding?
- What can we do about stunting that has already occurred past 3 years of age?
- Research into quality & effectiveness of international aid for improving nutrition